The role of matrix proteins in the control of nacreous layer deposition during pearl formation.

نویسندگان

  • Xiaojun Liu
  • Jiale Li
  • Liang Xiang
  • Juan Sun
  • Guilan Zheng
  • Guiyou Zhang
  • Hongzhong Wang
  • Liping Xie
  • Rongqing Zhang
چکیده

To study the function of pearl oyster matrix proteins in nacreous layer biomineralization in vivo, we examined the deposition on pearl nuclei and the expression of matrix protein genes in the pearl sac during the early stage of pearl formation. We found that the process of pearl formation involves two consecutive stages: (i) irregular calcium carbonate (CaCO(3)) deposition on the bare nucleus and (ii) CaCO(3) deposition that becomes more and more regular until the mature nacreous layer has formed on the nucleus. The low-expression level of matrix proteins in the pearl sac during periods of irregular CaCO(3) deposition suggests that deposition may not be controlled by the organic matrix during this stage of the process. However, significant expression of matrix proteins in the pearl sac was detected by day 30-35 after implantation. On day 30, a thin layer of CaCO(3), which we believe was amorphous CaCO(3), covered large aragonites. By day 35, the nacreous layer had formed. The whole process is similar to that observed in shells, and the temporal expression of matrix protein genes indicated that their bioactivities were crucial for pearl development. Matrix proteins controlled the crystal phase, shape, size, nucleation and aggregation of CaCO(3) crystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Sequencing of ESTs from Nacreous and Prismatic Layer Producing Tissues and a Screen for Novel Shell Formation-Related Genes in the Pearl Oyster

BACKGROUND Despite its economic importance, we have a limited understanding of the molecular mechanisms underlying shell formation in pearl oysters, wherein the calcium carbonate crystals, nacre and prism, are formed in a highly controlled manner. We constructed comprehensive expressed gene profiles in the shell-forming tissues of the pearl oyster Pinctada fucata and identified novel shell form...

متن کامل

Pearl Microstructure and Expression of Shell Matrix Protein Genes MSI31 and MSI60 in the Pearl Sac Epithelium of Pinctada fucata by In Situ Hybridization

Expression patterns of the shell matrix protein genes MSI31 and MSI60 in the pearl sac epithelium were examined by in situ hybridization 38 days after implantation, and related to pearl quality. A pearl sac that produced a nacreous pearl showed very weak expression of MSI31 and strong expression of MSI60. A pearl sac, which yielded a prismatic pearl, strongly expressed MSI31 and very weakly exp...

متن کامل

Identification of Genes Directly Involved in Shell Formation and Their Functions in Pearl Oyster, Pinctada fucata

Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineral...

متن کامل

Novel Genes Participating in the Formation of Prismatic and Nacreous Layers in the Pearl Oyster as Revealed by Their Tissue Distribution and RNA Interference Knockdown

In our previous publication, we identified novel gene candidates involved in shell formation by EST analyses of the nacreous and prismatic layer-forming tissues in the pearl oyster Pinctada fucata. In the present study, 14 of those genes, including two known genes, were selected and further examined for their involvement in shell formation using the RNA interference. Molecular characterization ...

متن کامل

Isolation and characterization of a novel acidic matrix protein hic22 from the nacreous layer of the freshwater mussel, Hyriopsis cumingii.

Matrix proteins that either weakly acidic or unusually highly acidic have important roles in shell biomineralization. In this study, we have identified and characterized hic22, a weakly acidic matrix protein, from the nacreous layer of Hyriopsis cumingii. Total protein was extracted from the nacre using 5 M EDTA and hic22 was purified using a DEAE-sepharose column. The N-terminal amino acid seq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 279 1730  شماره 

صفحات  -

تاریخ انتشار 2012